A Higman-Haemers Inequality for Thick Regular Near Polygons
نویسندگان
چکیده
منابع مشابه
A Higman-Haemers Inequality for Thick Regular Near Polygons
In this note we will generalize the Higman-Haemers inequalities for generalized polygons to thick regular near polygons.
متن کاملA Higman inequality for regular near polygons
The inequality of Higman for generalized quadrangles of order (s, t) with s > 1 states that t ≤ s. We will generalize this by proving that the intersection number ci of a regular near 2d-gon of order (s, t) with s > 1 satisfies the tight bound ci ≤ (s − 1)/(s − 1), and we give properties in case of equality. It is known that hemisystems in generalized quadrangles meeting the Higman bound induce...
متن کاملAn inequality for regular near polygons
Let Γ denote a near polygon distance-regular graph with diameter d ≥ 3, valency k and intersection numbers a1 > 0, c2 > 1. Let θ1 denote the second largest eigenvalue of Γ. We show θ1 ≤ k − a1 − c2 c2 − 1 . We show the following (i)–(iii) are equivalent. (i) Equality is attained above; (ii) Γ is Q-polynomial with respect to θ1; (iii) Γ is a dual polar graph or a Hamming graph.
متن کاملA Note on Regular Near Polygons
In this note we prove several inequalities for regular near polygons. ∗This work was partly supported by the Grant-in-Aid for Scientific Research (No 14740072), the Ministry of Education, Science and Culture, JAPAN. †This work was partly done when the author was at the ComMaC center at the Pohang University of Science and Technology. He would like to thank the ComMaC-KOSEF for its support.
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2004
ISSN: 0925-9899
DOI: 10.1023/b:jaco.0000047283.91464.3c